Multi-Shaped Ag Nanoparticles in the Plasmonic Layer of Dye-Sensitized Solar Cells for Increased Power Conversion Efficiency

نویسندگان

  • Da Hyun Song
  • Ho-Sub Kim
  • Jung Sang Suh
  • Bong-Hyun Jun
  • Won-Yeop Rho
چکیده

The use of dye-sensitized solar cells (DSSCs) is widespread owing to their high power conversion efficiency (PCE) and low cost of manufacturing. We prepared multi-shaped Ag nanoparticles (NPs) and introduced them into DSSCs to further enhance their PCE. The maximum absorption wavelength of the multi-shaped Ag NPs is 420 nm, including the shoulder with a full width at half maximum (FWHM) of 121 nm. This is a broad absorption wavelength compared to spherical Ag NPs, which have a maximum absorption wavelength of 400 nm without the shoulder of 61 nm FWHM. Therefore, when multi-shaped Ag NPs with a broader plasmon-enhanced absorption were coated on a mesoporous TiO₂ layer on a layer-by-layer structure in DSSCs, the PCE increased from 8.44% to 10.22%, equivalent to an improvement of 21.09% compared to DSSCs without a plasmonic layer. To confirm the plasmon-enhanced effect on the composite film structure in DSSCs, the PCE of DSSCs based on the composite film structure with multi-shaped Ag NPs increased from 8.58% to 10.34%, equivalent to an improvement of 20.51% compared to DSSCs without a plasmonic layer. This concept can be applied to perovskite solar cells, hybrid solar cells, and other solar cells devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of Ag-doped TiO2 nanostructure and investigation of its application as dye-sensitized solar cell

A new strategy for enhancing the efficiency of TiO2 dye-sensitized solar cells (DSSCs) by doping foreign ion into TiO2 lattice via sol-gel process is reported. DSSCs are based on a semiconductor (i.e., TiO2), formed between a photo-sensitized anode and an electrolyte. In order to reach high conversion efficiency, it is important to increase the electron injection and optical absorption. One pro...

متن کامل

Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavele...

متن کامل

The investigation on different light harvesting layers and their sufficient effect on the photovoltaic characteristics in dye sensitized solar cell

Titanium dioxide-based nanofibers (TiO2 nanofiber) were prepared by an electrospinning technique. The electrospun composite fibers were synthesized at different concentrations of titanium isopropoxide (25.35, 50.69, 76.05 wt%) and calcinated at different temperatures (450 oC, 650 oC and 850 oC) for 2 h. The diameters of nanofibers decreased by increas...

متن کامل

Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells

In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...

متن کامل

Simple Synthesis of In2S3 Nanoparticles and their Application as Co-sensitizer to Improve Energy Conversion of DSSCs

This paper describes synthesis of In2S3 nanoparticles by sonochemistry method and their application to enhance solar cells performance which In2S3 nanoparticles work as co-sensitizer for the first time. In2S3 is a narrow band gap semiconductor (2 eV) with conduction band higher than TiO2. Therefore it can transfer electron to the conduction band of TiO2. The effect of different parameters such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017